ROLE OF EXTERNAL QUALITY ASSESSMENT SCHEMES IN THE STANDARDIZATION AND POSTMARKET VIGILANCE

János Márki-Zay1,2, Erika Sárkány1, László Dux 1,2

1QualiCont In Vitro Diagnostic Quality Control Nonprofit Public Utility Ltd.
2Department of Biochemistry, Faculty of Medicine, University of Szeged
Purpose of EQA schemes

To support the quality improvement of in vitro diagnostic services by

- Objective evaluation of the overall performance of clinical laboratories
- Education and training for the participants
- Assessment of the efficiency of their analytical procedures:
 - testing method,
 - reagents,
 - instrument and
 - calibration.
- Support the implementation of reference measurement systems (RMSs)
- Postmarket vigilance of the IVD MDs – EN 14136:2004
Support of RMSs in the laboratory medicine

Requirements:
- QCMs with reference values traceable to RMSs
- Identification of individual procedures / devices
- Statistically significant number of participant laboratories

Advantages:
- Detection of standardisation, specificity and interference problems
- Might be used for the evaluation of the commutability of RMss
- Conformity to the harmonised standard EN ISO 14136:2004
- Enable the postmarket vigilance of IVD MDs
Vigilance of *in vitro* diagnostic (IVD) medical devices (MDs)

IVD Directive (98/79/EC), Article 11: Vigilance procedure

1. Member States shall take the necessary steps to ensure that any information brought to their knowledge, in accordance with the provisions of this Directive, regarding the incidents mentioned below involving devices bearing the CE marking is recorded and evaluated centrally:

 (a) any malfunction, failure or deterioration in the characteristics and/or performance of a device, as well as any inadequacy in the labelling or the instructions for use which, directly or indirectly, might lead to or might have led to the death of a patient, or user or of other persons or to a serious deterioration in their state of health;

 (b) any technical or medical reason in relation to the characteristics or performance of a device for the reasons referred to in subparagraph (a), leading to systematic recall of devices of the same type by the manufacturer.
Is the postmarket vigilance a business of the EQA schemes?

IVD Directive (98/79/EC), Article 11: Vigilance procedure

2. Where a Member State requires medical practitioners, the medical institutions or the organisers of external quality assessment schemes to inform the competent authorities of any incidents referred to in paragraph 1, it shall take the necessary steps to ensure that the manufacturer of the device concerned, or his authorised representative, is also informed of the incident.

■ The requirements of the EQAS to fulfil their function in the postmarket vigilance procedure is further specified in a harmonised standard:

EN 14136:2004 Use of external quality assessment schemes in the assessment of the performance of in vitro diagnostic examination procedures
Complement C3 (IgG, Transferrin)

Successful standardization
[ERM/IFCC-DA470K]

Individual errors

C-reactive protein (CRP)

Remarkable imprecision (2003, 2005)

Possible explanations:
- incorrect execution of the measurement procedure?
- lot-related differences?
- susceptibility to operator or instrument influences?
- susceptibility to deterioration in shipment or in use?

Significant improvement (2009)

EQALM Symposium, Szeged
HgbA1C, 2011/IV. survey
results in mmol/mol
target: RMV, mmol/mol, green zone: acceptable range, lab’s result with yellow

3. Hemoglobin A1c

145. Glikált proteinek I.

Own group, HPLC
Other group: RO
Own result
Insufficient standardization

The results are separated according to the methods applied

Possible explanations:
- incorrect calibration?
- different specificities (between procedures)?
- susceptibility to interference?
- lack of commutability of survey sample?

22–23. September 2011. EQALM Symposium, Szeged
Proficiency testing study on rare SNPs

- Institute for Reference Materials and Measurements (IRMM) and three EQA organisers (DGKC, Instand eV, QualiCont Kht.)
- On the coagulation Factor II (FII, prothrombin) gene G20210A variant and adjacent rare mutations resulting in unusual genotyping results using some techniques (e.g. LightCycler).

Aims of the study:

- Commutability study on the FII reference plasmids
- Identify the weaknesses in molecular genetic testing
- To assess the competence of clinical laboratories to recognize interfering rare sequence variants and report them correctly.

22–23. September 2011. EQALM Symposium, Szeged
Samples prepared for the ring trial

- **Sample A (—):**
 - Melting peaks on the LC: 50 °C and 58 °C*
 - Other methods: Heterozygous mutant

- **Sample B (—•—):**
 - Melting peaks on the LC: 54 °C and 60 °C
 - Other methods: Homozygous wild-type

- **Sample C:**
 - Homozygous mutant

- **Sample D:**
 - Homozygous wild-type

The ring trial

- 189 laboratories (21 countries)
- 50 different genotyping procedures

Laboratory performance I: Overall results

<table>
<thead>
<tr>
<th></th>
<th>Sample A</th>
<th>Sample B</th>
<th>Sample C</th>
<th>Sample D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>102</td>
<td>100</td>
<td>177</td>
<td>180</td>
<td>559</td>
</tr>
<tr>
<td>False</td>
<td>7</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Not reported</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Error rate</td>
<td>6.4 %</td>
<td>2.9 %</td>
<td>6.3 %</td>
<td>4.3 %</td>
<td>5.1 %</td>
</tr>
<tr>
<td>Unusual results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not reported (false)</td>
<td>50 (74.6 %)</td>
<td>33 (38.8 %)</td>
<td>n. a.</td>
<td>n. a.</td>
<td>83 (54.6 %)</td>
</tr>
<tr>
<td>Technical issueb</td>
<td>10 (14.9 %)</td>
<td>22 (25.9 %)</td>
<td>n. a.</td>
<td>n. a.</td>
<td>32 (21.1 %)</td>
</tr>
<tr>
<td>Recognised variant</td>
<td>7 (10.5 %)</td>
<td>30 (35.3 %)</td>
<td>n. a.</td>
<td>n. a.</td>
<td>37 (24.3 %)</td>
</tr>
</tbody>
</table>

a Without Allelic Discrimination assays affected by an impaired amplification of the “wild-type” sequence due to the [20175T>G; 20179_20180delAC] mutation

b Refers to laboratories not reporting genotypes but describing observations such as unusual results of presumed technical origin

- Typical figures in the field of molecular genetic testing
- Only a fraction of laboratories recognised and adequately reported unexpected SNPs.
Laboratory performance II: Error sources

- 2 labs used **inadequate nomenclature**!
- **21/30 (70 %)** of the false results concentrate 9 laboratories only!
- Majority of the false results arose from the inadvertence of laboratory personnel
 - Mixing up of the results post-analytically
 - Genotypes assigned incorrectly although the raw data showed the expected patterns.
- Allele-specific PCR assays proved to be less robust than other techniques
- The elevated error rate of certain LDTs indicates that they, as a group, have to be more carefully validated
 - Insufficiently robust laboratory developed LightCycler assay
- Alertness for the presence of additional mutations
Laboratory performance III: conclusions

- The plasmidic FII QC Materials (QCMs) are commutable
- Raw data and description of methodology is indispensable for the identification of error sources!
- Weak points, which could be eliminated:
 - Allele Specific Amplification
 - Labs with poor performance
 - Training!!!

Vigilance procedure:

- Roche Diagnostics recalled and modified the Factor II (Prothrombin) G20210A Kit for the LC 2.0 instruments, because its macro component erroneously identified the C20209T mutation as wild-type genotype instead of an unknown variant.
Further examples for vigilance I: LDH (2008)

LDH measurements 2008-2011

- Ca. 10% bias at the upper reference limit
- Difficult to detect by the individual laboratories

EQALM Symposium, Szeged
Further examples for vigilance II: Kell antigen (2005)

Determination of **blood group antigens** such as the Kell antigen system belongs to the so called „**high risk**” measurements, the error in this measurements can lead serious deterioration in the patient state of health or may lead to death.
Further examples for vigilance II: Kell antigen (2005) /2

- The reagent kit was marketed under two different brand names.
- Only one batch was deteriorated.
- The kit had been withdrawn from the market and
- All of the parties affected had been informed:
 - Laboratories,
 - Distributor/Manufacturer,
 - Authority

Dr. Sárkány Erika
irodavezető

In Vitro Diagnostikai Minőségellenőrzési Kht.
Szeged
Pf. 910
6701

Tisztelet Irodavezető Asszony!

A kérdéseket kártyát, mellyel a hibás Kell antigén meghatározás történt, kivontuk a forgalomból, és erősítettünk minden érdekelő, a forgalmazóval is felvettük a kapcsolatot.

Az előírásokhoz, postán küldött minták valóban nem voltak hemolitikusak, de az is igaz, hogy munkaidőben érkeztek, és azonnal hálószekrénybe kerültek. Előképzeltük, hogy ahol postafiók van, nem mindennap hozzák el a küldeményeket, és azok sokáig állnak, nem is mindig szobahőmérsékleten, hanem ennél melegebb körülmények között, ez magyarázatja azt, hogy néhány laboratóriumban előfordult hemolízis miatti probléma, amit jeleztek. A legutóbbi körkontroll esetében, három ilyen laboratóriumi volt.

Üdvözlettel:

[Signature]
Dr. Horváth Izabella

22–23. September 2011. EQALM Symposium, Szeged
Conclusions

- As primary sources of inter-method performance data, EQAS distributing QCMs with target values traceable to a RMS are able to detect standardisation, specificity and interference problems, and efficient tools in the vigilance of IVD MDs.
- In the EU, the contribution of the EQAS to the postmarket monitoring of IVD MDs is a legal obligation.
- In order to utilize the full power of EQAS in the vigilance – a more exact identification of measurement procedures is needed, including also the cat# and lot# of reagents and calibrators, instruments – Gathering such additional data could be facilitated by harmonisation of EQA schemes and applying a standardised coding system and probably also a centralized database.

22–23. September 2011, EQALM Symposium, Szeged
Thank you for your attention!

EQALM Symposium, Szeged