Quality Specifications

Berlin 2009

Sverre Sandberg
Norwegian Quality Improvement of Primary Care Laboratories (NOKLUS),
Bergen Norway
WHY?

To know the (analytical) quality is necessary for correct interpretation of laboratory tests.

To be able to optimize interpretation of laboratory tests, quality specifications are necessary.
Quality specifications

QS modifier

Precision Bias

Quality control rules
Diagnostic accuracy
What will I talk about?

- One statement and two questions
- Is it OK to use within subject variation as a basis for quality specifications?
- What about the “clinical” approach – is it possible?
- Is it advisable to write clinical guidelines without quality specifications?
As important as quality specifications for the analytical part is quality specifications for the pre-analytical and post-analytical face.
Why are quality specifications always given in percentages?

- It assumes that the error always is proportional.
- It is easier in EQAS to fulfil criteria in the high level than in the low level.
Patient self-testing: Difference between ProTime and laboratory INR vs laboratory INR.

![Graph showing the difference between ProTime and laboratory INR](image)
Are QS – evidence based?

Has it been shown that certain QS will improve the outcome of patient handling better than others?

Or

Are the quality of medical laboratories depending on what quality specifications we set in external quality assessment schemes.
Setting quality goals to optimize interpretation of laboratory results

Two principally different approaches:

To minimize the effect of analytical uncertainty compared to uncertainties that we can not influence (e.g. within-subject biological variation)

To be able to minimize the effect of false diagnostic classifications or false actions in monitoring situations
Within-subject biological variation

This is done because we want the analytical variation not to influence the total variation. It has nothing to do with clinical needs. Usually it is argued that the imprecision should be $< \frac{1}{2}$ the within-subject biological variation, and it then accounts for about 12 % of the total variation.
Some concerns with within-subject variation as a basis for QoSs

Often other “biological” sources for variation is not taken into account e.g.— posture, food, exercise, diseases, within-day biological variation.

The way to calculate within-subject variation is not done in a standardized way.

Confidence intervals are not usually given.
Example: U- albumin

To find the within-subject biological variation for u-albumin, a systematic search was done for papers on biological variation.

More than 30 papers were found through more than 20 years
Current Issues in Measurement and Reporting of Urinary Albumin Excretion

W. Greg Miller,1* David E. Bruns,2 Glen L. Hortin,3 Sverre Sandberg,4 Kristin M. Aakre,4 Matthew J. McQueen,5 Yoshihisa Itoh,6 John C. Lieske,7 David W. Seccombe,8 Graham Jones,9 David M. Bunk,10 Gary C. Curhan,11 and Andrew S. Narva,12 on behalf of the National Kidney Disease Education Program–IFCC Working Group on Standardization of Albumin in Urine

BACKGROUND: Urinary excretion of albumin indicates kidney damage and is recognized as a risk factor for ACR. The recommended reference intervals for the ACR do not take into account the large interassay diff
<table>
<thead>
<tr>
<th>Ref</th>
<th>N</th>
<th>Type of patients</th>
<th>Albumin concentration (c)</th>
<th>Time interval between samples</th>
<th>Number of samples</th>
<th>Type of urine collection</th>
<th>Storage temperature °C</th>
<th>Albumin Concentration</th>
<th>Albumin in 24 hours excretion</th>
<th>Albumin Excretion Rate</th>
<th>Albumin/Creatinine Ratio</th>
<th>Intraindividual biological variation (CVI, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>Healthy</td>
<td>34 mg/24 hours</td>
<td>4 hours</td>
<td>6</td>
<td>4 hour timed</td>
<td>-70</td>
<td></td>
<td></td>
<td>80</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Mild HT or healthy</td>
<td>30 µg/min</td>
<td>12 hours</td>
<td>7</td>
<td>Timed overnight and day</td>
<td>-70</td>
<td>58</td>
<td>60</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>Mild HT or healthy</td>
<td>4 µg/min</td>
<td>12 hours</td>
<td>7</td>
<td>Timed overnight and day</td>
<td>-70</td>
<td>51</td>
<td>60</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>Diabetes 1</td>
<td>24 mg/L (range 8.2-86)</td>
<td>day</td>
<td>2</td>
<td>24 h</td>
<td>-20</td>
<td>41</td>
<td>48</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>Healthy</td>
<td>8.0 mg/24 h</td>
<td>day</td>
<td>3</td>
<td>24 h</td>
<td>-20</td>
<td>44</td>
<td>49</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>Healthy</td>
<td>6.6 µg/min</td>
<td>day</td>
<td>3</td>
<td>Daytime (08-23)</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>Healthy</td>
<td>4.2 µg / min</td>
<td>day</td>
<td>3</td>
<td>Overnight (23-09)</td>
<td>-20</td>
<td>56</td>
<td>56</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>135</td>
<td>Diabetes</td>
<td>8.6 mg/24 h</td>
<td>day</td>
<td>3</td>
<td>24 h</td>
<td>-20</td>
<td>37</td>
<td>47</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>Diabetes</td>
<td>84.9 mg/24 h</td>
<td>day</td>
<td>3</td>
<td>24 h</td>
<td>-20</td>
<td>47</td>
<td>47</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>Healthy</td>
<td>not stated</td>
<td>day</td>
<td>5</td>
<td>Second morning</td>
<td>Fresh</td>
<td>29</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>334</td>
<td>Diabetes 1</td>
<td>10% >3 mg /mmol; 90%<3 mg/mmol</td>
<td>day</td>
<td>3</td>
<td>First morning</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Diabetes</td>
<td>MA</td>
<td>day</td>
<td>3</td>
<td>Timed overnight</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Diabetes</td>
<td>MA</td>
<td>day</td>
<td>3</td>
<td></td>
<td>24 h</td>
<td>20</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Diabetes</td>
<td>MA</td>
<td>day</td>
<td>3</td>
<td>Random spot sample</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>201</td>
<td>Healthy</td>
<td>0.1-122 mg/L</td>
<td>day</td>
<td>2</td>
<td>First morning</td>
<td>20</td>
<td>27</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>Healthy</td>
<td>1.2-7.4 µg/min</td>
<td>day</td>
<td>3</td>
<td>Timed overnight</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>Healthy</td>
<td>not stated</td>
<td>day</td>
<td>4</td>
<td>Second morning</td>
<td>Fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>Diabetes 1</td>
<td>Normoalbuminuria</td>
<td>day</td>
<td>7</td>
<td>Timed overnight and early morning</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>Diabetes 2</td>
<td>Normoalbuminuria</td>
<td>day</td>
<td>3</td>
<td>Timed overnight</td>
<td>-70</td>
<td>36</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>Diabetes 2</td>
<td>Microalbuminuria</td>
<td>day</td>
<td>3</td>
<td>Timed overnight</td>
<td>-70</td>
<td>25</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Diabetes 2</td>
<td>Macroalbuminuria</td>
<td>day</td>
<td>3</td>
<td>Timed overnight</td>
<td>-70</td>
<td>22</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>216</td>
<td>High-normal or MA</td>
<td>22.5 (8.6-125.7) mg/24 h</td>
<td>day</td>
<td>2</td>
<td>24 h</td>
<td>Fresh</td>
<td>19</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>Diabetes, Children</td>
<td>8.5 mg/g and 11 mg/L</td>
<td>day</td>
<td>3</td>
<td>First morning</td>
<td>3 days, room temp</td>
<td>89</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>Healthy, Children</td>
<td>4.7 mg/g and 5.8 mg/L</td>
<td>day</td>
<td>3</td>
<td>First morning</td>
<td>3 days, room temp</td>
<td>89</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>Healthy, adults</td>
<td>5.9 mg/g and 7.7 mg/L</td>
<td>day</td>
<td>3</td>
<td>First morning</td>
<td>3 days, room temp</td>
<td>25</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>Healthy</td>
<td>7.8 mg/24 h</td>
<td><week</td>
<td>5</td>
<td>24 h</td>
<td>-20</td>
<td>61</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>Healthy</td>
<td>0.58 mg/mmol creatinine</td>
<td><week</td>
<td>10</td>
<td>First morning</td>
<td>-20</td>
<td>36</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>Healthy</td>
<td>1.1 mg/mmol creatinine</td>
<td><week</td>
<td>10</td>
<td>Random un timed</td>
<td>-20</td>
<td>61</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>Healthy</td>
<td>1.7-10.2 ug/min</td>
<td>week</td>
<td>5</td>
<td>Timed overnight</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Diabetes</td>
<td>1.9-28 ug/min</td>
<td>week</td>
<td>5</td>
<td>Timed overnight</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>Diabetes</td>
<td>31-123 ug/min</td>
<td>week</td>
<td>5</td>
<td>Timed overnight</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4678</td>
<td>Random selection</td>
<td><1 mg/L and all participants</td>
<td>3-6 weeks</td>
<td>2</td>
<td>24 h</td>
<td>-20</td>
<td>46</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1933</td>
<td>Random selection</td>
<td>> 1.0 mg /L</td>
<td>3-6 weeks</td>
<td>2</td>
<td>24 h</td>
<td>-20</td>
<td>27</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1709</td>
<td>Random selection</td>
<td>AE < 30 mg/24h and > 1 mg/L</td>
<td>3-6 weeks</td>
<td>2</td>
<td>24 h</td>
<td>-20</td>
<td>25</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>204</td>
<td>Random selection</td>
<td>30-299 mg/24h</td>
<td>3-6 weeks</td>
<td>2</td>
<td>24 h</td>
<td>-20</td>
<td>M/W=42/78</td>
<td>M/W=39/78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>Diabetes</td>
<td>24 mmoll (range 8-246)</td>
<td>month</td>
<td>2</td>
<td>24 h</td>
<td>-20</td>
<td>.90</td>
<td>.59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U- albumin
some variation in the papers found

- Sampling time (morning, overnight, spot etc)
- Reporting units (A/L, A excr/24 h, A/C ratio)
- Length of study (Within day, Between Days, weeks, months)
- Concentrations (low / medium / high)
- Type of persons (diseased / healthy)
U-albumin – analytical issues

- Collection tubes – absorption of albumin to the tube walls
- Storage before analyzing, room, freezer (-20 or -80 degrees)
- Consecutive analyzing or analyzing after storage in the same series or in different series
Large variation in results

- CV variation from 11% (4) to 106% in the albumin / creatinine ratio

- Conclusions: It is a need for standardization
WG in EFCC (chair Bill Bartlett, UK)

Terms of references:

1. To describe and characterize papers on biological variation for one or two constituents. Sources for variation in papers on estimation of biological variation in the papers should be identified.

2. To develop a critical appraisal check list for papers on biological variation.

3. To develop a method for meta-analysis of data on within-subject variation.
Clinical approach
Consequences of false classifications

- Minimize the number of false positives and false negatives –
- Give weight (medical and/or economical) to the different classifications.

This has been dealt with in the previous lecture
Opinions of clinicians and patients

A method to discover how the clinicians are using the tests.

It is then possible to extract what analytical quality they presuppose that they have.

This can then be used (a) for quality specifications or (b) to educate physicians in how they should interpret the results.
How to find the "opinions" of the clinicians?

1. To examine the journals to see what the physicians do in the real life situation
2. To distribute case histories to simulate real life
Post-analytical external quality assurance (P-EQAS)

Distribution of case-histories in which the laboratory result is of great importance. We then incorporate these questions in a larger questionnaire to evaluate post-analytical performance (how do they handle the result)
Postanalytical External Quality Assessment of Warfarin Monitoring in Primary Healthcare

Ann-Helen Kristoffersen,1* Geir Thue,2 and Sverre Sandberg1,2
Two case histories
Circulated to 3781 GPs

Patient A: Aortic stenosis with mechanical heart valve prosthesis Stable INR results of about INR 3.3
Patient A: Mechanical heart valve prosthesis

Last months stable INR results (3.0-3.5)

 Last result: \textit{INR 3.3}

How low should the next INR result be for you to increase the marevan dose: _____

How high should the next INR result be for you to reduce the Marevan dose? _____
Critical difference

The differences between the two results given is the medical critical difference (CD) which one should be able to detect by the actual measurement method.

Dependent on the question, the CD can comprise:
- pre-analytical variation
- imprecision under defined reproducibility conditions
- within-subject variation
- bias
Calculations

\[CD = bias + z \cdot \sqrt{2} \cdot \sqrt{CV^2_{ws} + CV^2_a} \]

\[CV_a = \sqrt{((CD - bias) / z \cdot \sqrt{2})^2 - CV^2_{ws}} \]
Critical difference

<table>
<thead>
<tr>
<th></th>
<th>Increase in dose from INR 3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median INR value 10/90 perc</td>
<td>2.6 (2.9 / 2.0)</td>
</tr>
<tr>
<td>Critical difference</td>
<td>24%</td>
</tr>
<tr>
<td>CVa</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Feedback report to the participants

Information on

- Own results compared to others
- Corresponding analytical quality
- Information on analytical and biological variation
- Guidelines for use of the actual laboratory tests
Postanalytical External Quality Assessment of Urine Albumin in Primary Health Care: An International Survey

Kristin M. Aakre,¹* Geir Thue,² Sumathi Subramaniam-Haavik,² Tone Bukve,² Howard Morris,³ Mathias Müller,⁴ Marijana V. Lovrencic,⁵ Inger Plum,⁶ Kaja Kallion,⁷ Alar Aab,⁸ Marge Kutt,⁹ Philippe Gillery,¹⁰ Nathalie Schneider,¹⁰ Andrea R. Horvath,¹¹ Rita Onody,¹¹ Wytze Oosterhuis,¹² Carmen Ricos,¹³ Carmen Perich,¹⁴ Gunnar Nordin,¹⁵ and Sverre Sandberg¹,²
Quality specifications set by GPs and patients

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Quality specification CVa</th>
<th>Ref</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb</td>
<td>2.8 %</td>
<td>SJCLI. 1991;51:453</td>
<td>2.3 – 7.8</td>
</tr>
<tr>
<td>SR</td>
<td>10 mm</td>
<td>SJCLI. 1994;54:291</td>
<td></td>
</tr>
<tr>
<td>HbA1c - GPs</td>
<td>1-3%</td>
<td>Clin Chem. 2005;51:1145</td>
<td></td>
</tr>
<tr>
<td>HbA1c - patients</td>
<td>3%</td>
<td>Clin Chem. 2001;47:1212</td>
<td></td>
</tr>
<tr>
<td>Glucose GPs</td>
<td>3%</td>
<td>Clin Chem. 2005;51:1145</td>
<td></td>
</tr>
<tr>
<td>Glucose pat. norm</td>
<td>7%</td>
<td>Clin Chem. 2001;47:67</td>
<td></td>
</tr>
<tr>
<td>Glucose pat. hypo</td>
<td>3%</td>
<td>Clin Chem. 2001;47:67</td>
<td></td>
</tr>
<tr>
<td>PT-INR</td>
<td>15%</td>
<td>Clin Chem. 2006;52:1871</td>
<td>CD=8%</td>
</tr>
<tr>
<td>U-albumin</td>
<td>14%</td>
<td>Clin Chem. 2008;54:1630</td>
<td>CD=33%</td>
</tr>
</tbody>
</table>
Professional recommendations
- often done by organisation and implemented in recommendations

- Often use of the GOBSAT methodology
 (good old boys sat at a table)

- Typical examples are ADA guidelines for glucose and HbA1c
Measure HbA_{1c} using high-precision methods and report results in units aligned with those used in DCCT Trial (or as recommended by national agreement after publication of this guideline).218

The International Expert Committee*

An International Expert Committee with members appointed by the American Diabetes Association, the European Association for the Study of Diabetes, and the International Diabetes Federation was convened in 2008 to consider the current and future means of diagnosing diabetes in nonpregnant individuals. Type 2 diabetes has a more gradual onset, with slowly rising glucose levels over time, and its diagnosis has required specified glucose values to distinguish pathologic glucose concentrations from the distribution of glucose concentrations in healthy individuals. Despite this, diagnosis has relied on distributions of glucose levels, rather than on the relationship of glucose levels with complications, to diagnose diabetes despite emerging evidence that the microvascular complications of diabetes were associated with a higher range of fasting and OGTT glucose values (11,13–15). The diagnostic glucose values chosen were based on their association with decompensation to “overt” or symptomatic...
Recommendations A1c

Table 2—Recommendation of the International Expert Committee

For the diagnosis of diabetes:

- The A1C assay is an accurate, precise measure of chronic glycemic levels and correlates well with the risk of diabetes complications.
- The A1C assay has several advantages over laboratory measures of glucose.
- Diabetes should be diagnosed when A1C is $\geq 6.5\%$. Diagnosis should be confirmed with a repeat A1C test. Confirmation is not required in symptomatic subjects with plasma glucose levels >200 mg/dl (>11.1 mmol/l).
- If A1C testing is not possible, previously recommended diagnostic methods (e.g., FPG or 2HPG, with confirmation) are acceptable.
- A1C testing is indicated in children in whom diabetes is suspected but the classic symptoms and a casual plasma glucose >200 mg/dl (>11.1 mmol/l) are not found.
EFCC - WG for guidelines

Terms of reference:

- Co-operate with clinical guidelines developers (e.g. SIGN, ADA, NICE) for the development of the laboratory part of clinical guidelines.
Summary

- Quality specifications are important but may be difficult to set.
- All current methods – biological variation, clinical reasoning and professional recommendations have serious limitations.
- Why are QSs always given in % and not in e.g. absolute values together with percentages.
QSs for the pre- and postanalytical face should be more emphasized

The effect of using different quality specifications should be studied

Laboratory people should be more involved in the writing of quality specifications for important constituents in clinical guidelines
There is still a way to go

Thank you

Case History

A 57 year old male taxi-driver, diagnosed two years ago with type 2 diabetes is in your office for a scheduled consultation. His is on oral antidiabetic treatment He has been overweight for several years, has stopped smoking and has begun a modest exercise programme. He has no diabetes-related complications, and is otherwise healthy. There is no history of early cardiovascular disease in his family. He feels well today.
Today’s results are similar to previous consultations: blood pressure 145/90; HbA1c 7.7%, total cholesterol 6.1mmol/L, HDL 1.1mmol/L, LDL 3.9mmol/L, triglycerides 1.6mol/L (fasting). His creatinine level is normal. He weight 99kg; BMI 29 kg/m².
The patient has not been previously tested for microalbuminuria (MA). He delivers a urine sample in accordance with the routines you have stated for first time examination for MA. This urine sample tests negative on an ordinary urine dipstick analysis.
Critical difference

Assume that at today’s consultation the taxi-driver has an albumin/creatinine-ratio of 15 mg/mmol (150 mg/mg). A year later the patient provides another urine sample. Based on the answer you have chosen above, what should the value be to indicate:

- deterioration in MA during the year, i.e. the value should have increased at least to: ____________

- improvement in MA during the year, i.e. the value should have decreased at least to: ____________
Quality specifications

Taking into account:

- QS modifier
- Pre-test probability
- Probability Modifier
- Test
- Quality control rules
- Diagnostic accuracy

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
</tbody>
</table>

Post-test probability

Diagnostic accuracy
Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus

David B. Sacks, David E. Bruns, David E. Goldstein, Noel K. Maclaren, Jay M. McDonald, and Marian Parrott
Recommendation: Enzymatic methods for glucose analysis are relatively well standardized. Despite the low imprecision at the diagnostic decision limits of 7.0 mmol/L (126 mg/dL) and 11.1 mmol/L (200 mg/dL), classification errors may occur. Because of the relatively large intraindividual biological variability (CVs of ~5–7%), FPG values of 5.8–6.9 mmol/L (105–125 mg/dL) should be repeated and individuals with FPG of 5.3–5.7 mmol/L (96–104 mg/dL) should be considered for follow-up at intervals shorter than the current ADA recommendation of every 3 years.

Level of evidence: E